Page 102 - 4560
P. 102

As the shear force
                     P
          Q    0  
            y
                     2
          (Figure. 8.3), then

             3
            d y       P
             3          .
            dx   x 0  2EJ  z
          (8.12)
                                                   Figure 8.3


                 The  condition  of
          symmetry of loading and the reaction of a foundation implies that
          the rotation angle of a section at the origin is zero
                                     dy 
                               0         0 .                 (8.13)
                                     dx  x 0
                 Using  the  boundary  conditions  (8.10)  -  (8.13),  we  find
          constant integrationC ,C ,C , C .
                               1  2   3   4
                 If  (8.10)  the  first  term  of  (8.9)  becomes  zero,  and  the
                                                    0
                                            0
          second term is zero only whenC  ,C  , therefore,
                                         3       4
                    y   x   e   x  C 1  cos x C   2  sin    x .   (8.14)
                Differentiated value (8.14), we obtain

             dy           x                        x
                  C e   cos x  sin    x   C  e  cos x   sin    x .
             dx     1                          2
                 The condition (8.13) gives
                         C    C    0 , or C   C ,
                             1   2          1   2
          so the equation of depressions takes the form

                      y   x   e   x C  cos x   sin    x ,   (8.15)
                                  1
          and the equation of angle rotation

                              dy        x
                         x     2e  C  sin x .               (8.16)
                                          1
                              dx
                                        102
   97   98   99   100   101   102   103   104   105   106   107