Page 106 - 4560
P. 106

operation of differentiation translates the function of Krylov, and
          near the arrow there is a factor that appears in differentiation.
                 The partial solution of a heterogeneous equation (8.3) is
          looked for in
                                x
                            1
                                                    dx .
                 y  *   x      q x i  4    x x  i   i      (8.27)
                                                    
                                     K 
                          3 EJ
                               z  0

                 Successively differentiating the equation (8.25), we obtain
          the following correlations














                                    Figure 8.5




                 y                                       *    
                                                       
             x     x     4AK  4    BK   CK   DK    y    ;x  
                                        1
                                                     3
                                              2
         
         
          M    x   EJ y   x   EJ  2   4AK  3    4BK 
                                                  4
                                 z
                     z
         
                                              *    
                                          
                                           CK  1    DK     y    x   ;  (8.28)
                                                   
                                        2
         
         
          Q   x   EJ y   x   EJ  3   4AK    4BK 
                    z          z          2      3
                                              *    
                                           
                                          4CK  4    DK    y    x    .
                                         1
         
                                        106
   101   102   103   104   105   106   107   108   109   110   111