Page 83 - 4549
P. 83

1) to work out a characteristic equation (5.3) ;
                                     2) to find the roots of the got characteristic equation;
                                     3) after the roots of characteristic equation to write down n
                                 linearly independent decisions equation (5.1):
                                                                                    x 
                                     а) partial decision answers every simple root – e ;
                                     б)  if     – real  root of  multiple  S,  S  answers  him linearly
                                                                  x 
                                 independent decisions  –  eC  x   ,  хe ,...,  x s 1  e   x   ;
                                                          1
                                     в)  every  steam  complex  conjugating  roots      і   ,   і 
                                 answers  two  linear  independent  partial  decisions  –
                                             x
                                  
                                            
                                   x
                                 e cos   x  ; e sin  x   ;
                                     г) to every steam complex conjugating roots     і   ,   і 
                                 of multiple of к answers 2к linear independent partial decisions
                                 –  (5.16).
                                     These  partial  decisions  will  be  exactly  so  much,  what
                                 degree of characteristic equation( that is so much, what order of
                                 differential equation). These decisions are linear independent.
                                     4) finding  n  linear  independent  decisions  y  , y  , y  ,.....y  ,
                                                                                1  2  3     n
                                 general decision of equation (5.1):

                                      y   C  y   C  y   C  y .....   C  y  .                            (5.18)
                                           1  1  2  2   3  3       n  n

                                     Example  5.4  To  find  the  common  decision  of  equation
                                        y     y    y  y    0 .
                                         We make characteristic equation  3    2     1  0
                                                      2 (  )1   (  )1   0
                                                     (  )1  ( 2   )1   0

                                                          ;1     i 
                                                      1        3 , 2

                                     partial  decisions will be written down as:

                                               y   e  x  y ;    cos  x;  y   sin  x .
                                                1       2         3

                                      The common decision is such therefore :

                                                               81
   78   79   80   81   82   83   84   85   86   87   88