Page 81 - 4549
P. 81

functions  (xu  ),v (x ) . For this purpose we will put (5.12) in (5.6)
                                 and get
                                      (u (x )  iv (x  ) )    а  (u (x )  iv (x  ) )   а  (u (x )  iv (x ))   0
                                                      1                2

                                     or

                                      (u  (   x )  uа  (  x )  а  u (x ))  і (v  (   x )  vа  (  x )  а  v (x ))   0
                                              1        2                1        2

                                     If complex  function  is zero, it is  real and  imaginary  parts
                                 also equal a zero. That is

                                 (u  (   x )  uа  (  x )  а  u (x ))   0 and  (  xv  )  vа  (  x )  а  v (x )   0 .
                                          1        2                     1        2

                                     The same it is led to, that functions  are decisions. (5.6).
                                     Pursuant  to  the  formula  of  Euler  of  decisions  (5.11)  it  is
                                 possible to write down in a kind:

                                     y   e  x  (cos x   i sin x  ); y   e  x  (cos x   i sin  ) x       (5.13)
                                    1                       2

                                     On the basis of set higher, Equations decisions (5.6) will be
                                 real parts
                                                            x
                                                           
                                              x
                                             
                                         y   e cos  x   y ;    e sin  x                                      (5.14)
                                        1              2

                                            y    e  x  sin x
                                     How     2             tg x   const ,  functions  y 1 , y   are
                                                                                        2
                                            y    e  x  cos x
                                             1
                                 linearly  independent  and  form  the  fundamental  system  of
                                 decisions.  Consequently,  general  decision  in  this  case  will  be
                                 written down:
                                        y   C  y   C  y   e  x (C  cos x   C  sin   ) x .              (5.15)
                                            1  1  2  2      1          2

                                      Example  5.3  To  find  the  common  decision  of  equation
                                       y  6   y  13 y  0.

                                       We make characteristic equation

                                                               79
   76   77   78   79   80   81   82   83   84   85   86