Page 82 - 4549
P. 82

 2    6   13   0
                                      D 36   4  13   16
                                          6   i 4           6   i 4
                                      1         3   2 i; 2      3   i 2
                                            2                   2

                                     Its roots complex and simple:    , 3     2 .
                                     Partial decisions will be written down:
                                                     3
                                                                    x
                                                                   3
                                                      x
                                                y   e cos 2 x;  y   e sin  x 2
                                                               2
                                                 1
                                      The common decision is such therefore:
                                      y   C  y   C  y   e 3x (C  cos 2x   C  sin  2x ).
                                           1  1  2  2      1          2

                                     Note 5.1 If for LHDE with the constant coefficients of 2к
                                 order  characteristic  equation  has  к  root  of  multiple  complex
                                 number     і ,     і . System of functions are:

                                                                          e
                                              e  x  cos x  ;хe  x  cos x  ;......., х к 1  x  cos x
                                                                                        (5.16)
                                                                          e
                                              e  x  sin x  ; хe  x  sin x  ;........, х  к 1  x  sin  ; x 

                                     The  fundamental  system  of  decisions  is  formed.  General
                                 decision will be written down as:

                                  y   (( C   C 2 х .....  С  n x k 1  )  cos  x    ( C   C 2 х .....  С n x k 1  ) sin  x   e )   x
                                                                   1
                                        1
                                                                                                                            (5.17)


                                     5.1.5.  The  roots  of  Characteristic  Equation  are
                                 Arbitrary

                                     We will consider a general case, when among the roots of
                                 characteristic equation (5.2) there are real simple, real multiple,
                                 complex  conjugate both simple  and multiple. Summing up  all
                                 said higher, it is possible to formulate such rule:
                                     To  find  general  decision  LHDE  it  is  needed  with  the
                                 constant coefficients of the n-th order (5.1):
                                                               80
   77   78   79   80   81   82   83   84   85   86   87