Page 53 - 4549
P. 53

1
                                     Example 3.2   To find the decision  y        according
                                                                                 2
                                                                             cos  x
                                                         ln  2   
                                 to initial conditions   y      ,  y        . 1
                                                       4   2       4 

                                                                         
                                        Integrating,  we  get  at  first  y   tgx   c  .  Repeated
                                                                                  1
                                 integration  gives  y     ln  cos x   c  x   c   -  it  is  the  common
                                                                   1    2
                                 decision of the given differential equation: Farther we decide the
                                 system of equations in relation to с 1 and  с 2:
                                                                    ln  2
                                                  ln cos  4    4  c 1   c 2    2  ,
                                                
                                                                           
                                                 tg     c   1
                                                   4   1
                                                
                                                   1              ln  2
                                                                             c
                                                ln      c 1   c 2    ,   1   ,0
                                                   2   4           2     
                                                                             c
                                                                            2   .0
                                               1   c 1   1

                                     Consequently, sought decision after part  y    ln  cos  x .

                                      3.2.2       Differential   Equations    of    a    Kind
                                 F (x , y (k ) , y ( k  ) 1  ,..., y (n ) )   0

                                     Let differential equation of the n-th order not contain in the
                                 obvious type of the sought function after and its derivative to the
                                 k-1-th order inclusive  1(   k   : ) n

                                      F  (x , y (k ) , y ( k  ) 1  ,..., y (n )  )   . 0                                            (3.9)

                                                                                    (k)
                                     Then we enter a new unknown function of z(x)=y (x)) and,
                                 taking into account, that  y  (k  ) 1     z , y (k   ) 2    z ,   ..., y  (n )    z (n  ) k  ,

                                                               51
   48   49   50   51   52   53   54   55   56   57   58