Page 100 - 4549
P. 100
We search the partial decision LNDE in a kind
* y x 2 e x (Ax ) B , because right part of the set equation
x
x
f ( x ) xe has a kind f ( x) Q ( x) e at s , 1 1 thus a
s
number 1 is the root of characteristic equation of multiple
2
r 2 . The last predetermines the presence of cofactor x .
We will find * yy , * and put *, yy , * y * in LNDE.
3
1 * y e x (Ax Bx 2 ),
2
3
2 * y e x 3 ( Ax 2Bx ) e x (Ax Bx 2 ),
2
3
1 * y e x (Ax x 2 3 ( A ) B 2Bx ) e x 3 ( Ax 2x 3 ( A ) B 2B ).
3
2
x
y * 2 y * y * e ( x ( A 2 A A ) x 3( A B 3 A 6 A 2 B B )
x 2( B 6 A 2 B 4 B 2) B ) xe x
x
Shortening on e after transformations we have
6 Ax 2 B x .
Equating coefficients at identical degrees x , we have
x 1 6 A 1 1
and A ,B 0 .
x 0 2 B 0 6
1 3 x
Thus, the partial decision of LNDE is y* x e .
6
Common decision of heterogeneous differential equation:
~ x 1 3 x
y y y* C ( C x) e x e .
1 2
6
6.4 Principle of superposition of decisions
~
If functions y (x ) are the upshots parts of equations
i
y (n ) a (x )y (n ) 1 ... a (x a (x )y f (x ),i , 1 , k
)y
1 n 1 n i
98