Page 100 - 4549
P. 100

We  search  the  partial  decision  LNDE  in  a  kind
                                   * y   x  2 e  x  (Ax   ) B ,  because  right  part  of  the  set  equation
                                           x
                                                                       x
                                                                      
                                  f ( x )  xe   has  a  kind  f ( x)   Q ( x) e   at  s    , 1    1  thus  a
                                                                 s
                                 number      1  is the root of characteristic equation of multiple
                                                                                      2
                                 r    2 . The last predetermines the presence of cofactor  x .
                                     We will find  * yy  ,  *  and put  *, yy  , * y  *   in LNDE.

                                                                  3
                                  1                      * y   e  x (Ax   Bx  2  ),
                                                           2
                                                                          3
                                                  
                                   2            * y   e  x  3 ( Ax   2Bx ) e  x  (Ax   Bx  2 ),
                                                                           2
                                               3
                                  1   * y     e x  (Ax   x 2  3 ( A   ) B   2Bx ) e  x  3 ( Ax   2x  3 ( A   ) B   2B ).
                                                        3
                                                                       2
                                                     x
                                      y  *  2 y  *    y *  e ( x ( A  2 A   A )  x 3(  A   B  3 A  6 A  2 B   B )
                                        x 2(  B  6 A  2 B  4 B  2)  B )  xe  x

                                                     x
                                     Shortening on e  after transformations we have
                                      6 Ax  2 B   x .
                                     Equating coefficients at identical degrees  x , we have
                                      x 1  6 A  1        1
                                                   and  A    ,B    0 .
                                      x 0  2 B  0        6

                                                                              1  3  x
                                     Thus, the partial decision of LNDE is  y*   x  e .
                                                                              6

                                     Common decision of heterogeneous differential equation:
                                          ~                  x  1  3  x
                                      y   y   y*   C (    C  x) e   x  e .
                                                    1    2
                                                                6

                                     6.4 Principle of superposition of decisions

                                                  ~
                                      If functions  y  (x ) are the upshots parts of equations
                                                   i

                                      y  (n )    a  (x )y  (n  ) 1    ... a  (x   a  (x )y   f  (x ),i   , 1  , k
                                                                  )y 
                                             1               n 1       n        i
                                                               98
   95   96   97   98   99   100   101   102   103   104   105