Page 102 - 4549
P. 102

x
                                       x
                                      e 2(  Ax  2 B  2 A  2)  Ce  x    xe   e 2   x

                                     After transformations we have
                                                       x
                                                                     x
                                           x
                                      2  Axe  (2  A   B) e  2 Ce  x    xe   e 2   x  .
                                                              x
                                     Equating  coefficients xe , e x  e ,   x    we  will  get  from:
                                 xe x   2 A  1
                                                              1        1
                                   x
                                  e    ( 2 A   B )   0     and  A    , B      ,C   1.
                                                              2        2
                                 e x   2 C  2

                                     Thus,  the  partial  decision  of  LNDE  has  a  kind
                                       1    1  
                                                     
                                                x
                                                      x
                                  y *    x    e   e .
                                       2    2  

                                     Common decision of LNDE is
                                                                 1        x    x
                                           y   C cos  x   C sin  x   ( x  )1  e   e .
                                                1        2
                                                                 2

                                     Exercises:

                                         1. To find the common decision of differential equation
                                 the method of variation of constant :
                                                   1
                                       )a y   4y   ;
                                                 sin 2x
                                                 1
                                       )б y   y   .
                                                e x 1

                                          2. For  each  of the set  equations  to write  his  decision
                                 part   with     indefinite   coefficients  (not  to find the numerical
                                 values  of coefficients   ) :
                                                                               2
                                                                                x
                                      а)  y   5y   5 ;                    г) 3y   2y   xe 3  ;

                                                               100
   97   98   99   100   101   102   103   104   105   106   107