Page 101 - 4549
P. 101

k
                                          ~        ~
                                 function  y( x)      y ( x)  is the partial decision of equation
                                                     i
                                                  i 1
                                                                                 k
                                      y ( n)   a ( x) y  n (   )1   ...   a  ( x)  y    a ( x)  y      f ( x) .
                                             1               n 1       n           i
                                                                                  i 1

                                     Example 6.7 To find common decision of equation
                                                x
                                      y    y   xe   e 2    x  .

                                       We have LNDE second order with constant coefficients,
                                 right part of which appears by the sum of two functions of the
                                 special kind.
                                     Proper LHDE   y   y    0.
                                     We make characteristic equation   2   1   0 roots of which
                                 are      i  .
                                       2 , 1
                                     Common decision of homogeneous equation:
                                      ~
                                      y   C cos x   C sin  x .
                                           1         2
                                     On  principle  of  superposition  of  decisions  we  search  the
                                 partial decision of LNDE in a kind

                                                               x
                                                                      x
                                                                     
                                      y *  y *    y *   ( Ax   B) e   Ce ,
                                             1     2

                                 because of  y  *  we have: f 1 (x )  xe  x , s  , 1     1, a number  
                                               1
                                 is  not  the  root  of  characteristic  equation;  for  y *   we  have:
                                                                                   2
                                  f  (x )  xe  x  , s  , 1    1,  a  number     is  not  the  root  of
                                   1
                                 characteristic equation.
                                     We  find  y   , * y *   and  will  put  *, yy  *   in  the  set
                                 differential equation

                                                            x
                                        1     y  (*  Ax   B) e   Ce  x
                                                               x
                                        0   y  (*   Ax   B   A) e   Ce   x
                                                                 x
                                        1  y  *   ( Ax   B   A   A) e   Ce  x
                                                               99
   96   97   98   99   100   101   102   103   104   105   106