Page 49 - 4167
P. 49

the  homogeneity  (shift  symmetry)  of  space  (position  in  space  is  the
                  canonical  conjugate  quantity  to  momentum).  That  is,  conservation  of
                  momentum is equivalent to the fact that physical laws do not depend on
                  position.

                        Consider  closed system that consists of n   particles which move
                  with different velocities  and  interact  with themselves (fig.5.1.). For
                  example, on a particle under a number  1 acts particle number 2 with
                           
                  force  F  and vice  versa. So  we can write n- equations of Newton's
                            12
                  second law    for all     particle of this system


                                                                             
                                                                                  )
                                                             ...   F    d( m  v )                    (5.1)
                                                 F
                                   F
                                         F
                                    12      13        14             n 1      dt            
                                                                                             
                                                                     d( m   v )          
                                   F     F     F     ...  F               2  2
                                     21     23      24            2 n                        
                                                                             dt
                                                                                  
                                                                       d(  m  v )        
                                   F 31  F  32   F   34  ...  F  n 3        3  3        
                                                                                             
                                                                               dt            
                                  .......... .......... .......... .......... .......... ......    
                                                                                             
                                                                        d( m  n (   n)1  v n 1 
                                   F  n (   1)1   F  n (   2)1  ...  F  n (   n)1    dt  
                                                                                  
                                                                        d( m   v )        
                                   F n1   F  n2   .....    F  n( n  )1     n  n         
                                                                                             
                                                                               dt            
                  Add  these equations  and take into account   Newton's third law
                                                                             
                                 F    F ;  F         F ........F n n 1       F n 1  n ,                  (5.2)
                                                          31
                                          21
                                                 13
                                12
                  we obtain
                                       d                            
                                             vm 1  1   m 2 v 2    m n v n  0 .                               (5.3)
                                       dt

                  It's   possible, when  value under  differential is constant
                                                             
                                     m 1 v   m 2 v      m n v   const .                               (5.4)
                                                                n
                                                 2
                                        1
                  Or
                                                   n  
                                                            i   const .                                              (5.5)
                                                      p
                                                 i n








                                                                48
   44   45   46   47   48   49   50   51   52   53   54