Page 93 - 6637
P. 93
1 x x
Z
2
√ dx = arcsin = − arccos for x < a 2
2
a − x 2 |a| |a|
Z
1 p
2
2
√ dx = log(x + x ± a )
2
x ± a 2
Z
1 1 x
√ dx = sec −1
2
x x − a 2 |a| a
√
!
2
Z
1 1 a + a ± x 2
√ dx = − log
2
x a ± x 2 a x
Z
1
sin(ax) dx = − cos(ax)
a
Z
1
cos(ax) dx = sin(ax)
a
1
Z
tan(ax) dx = − log cos(ax)
a
1 ax
Z
csc(ax) dx = log tan
a 2
1 π ax
Z
sec(ax) dx = log tan +
a 4 2
Z
1
cot(ax) dx = log sin(ax)
a
Z
1
sinh(ax) dx = cosh(ax)
a
1
Z
cosh(ax) dx = sinh(ax)
a
Z
1
tanh(ax) dx = log cosh(ax)
a
1 ax
Z
csch(ax) dx = log tanh
a 2
89