Page 89 - 4549
P. 89

Constant  of  integration  are  C   and  C .    We  determine  them
                                                              1        2
                                                              
                                 from  initial  conditions  y (0) 1 , y (0)   2 .    We  have  got:
                                 C   1 ln 2 , C    3 ln 2 .
                                   1               2
                                       Answer:
                                  y     e x (3 ln 2    x ) (1 e    x )ln(1 e  x  ) 2 ln 2 .   
                                       x
                                 Note  6.1  The  method  of  variation  of  arbitrary  constant  for
                                 LNDE-  n  is  like  used.  If  y  , y  ,   , y     are  formed
                                                                 1   2        n
                                 fundamental  system  of  decisions  of  LHDE  of  the  n-th  order.
                                            
                                 That  is  y   C 1 ( )x y   C 2 ( )x y    C y   -    its  general
                                                      1
                                                                        n
                                                                2
                                                                          n
                                 decision.  We search  the  partial  decision  of  LNDE of  the n-th
                                 order as a sum

                                       *
                                      y   C  ( )x y   C  ( )x y    C y                              (6.10)
                                            1    1   2     2       n  n
                                 in what function C k  ( ) ,x  k  1,2, ,n  we find from the system
                                 of equations
                                        C y   C y     C y     0
                                         1 1   2  2       n  n
                                        C y    C y      C y     0
                                         1 1
                                                           n
                                                             n
                                                2
                                                  2
                                       
                                                                     .           (6.11)
                                        C y   (n 2) 1 C y   (n 2) 2    C y   (n 2) n   0
                                                
                                         1        2              n
                                        C y   (n 1) 1 C y   (n 1) 2    C y   (n 1) n   f  ( )x
                                                
                                       
                                         1         2              n
                                     According  to  Wronski-Determinante  the  last  system  of
                                 linear differential equations is consistent.

                                     6.2 Linear Heterogeneous Differential Equations of the
                                 n-th Order With Constant Coefficients and Special Type of
                                 the Right Part

                                     We  will  consider  the  LNDE  of  the  n-th  order  with  the
                                 constant coefficients of kind
                                                                
                                         y (n )    a  y (n  ) 1    ... a  y   a  y   f  (x )                   (6.12)
                                               1            n 1    n
                                                               87
   84   85   86   87   88   89   90   91   92   93   94