Page 89 - 4549
P. 89
Constant of integration are C and C . We determine them
1 2
from initial conditions y (0) 1 , y (0) 2 . We have got:
C 1 ln 2 , C 3 ln 2 .
1 2
Answer:
y e x (3 ln 2 x ) (1 e x )ln(1 e x ) 2 ln 2 .
x
Note 6.1 The method of variation of arbitrary constant for
LNDE- n is like used. If y , y , , y are formed
1 2 n
fundamental system of decisions of LHDE of the n-th order.
That is y C 1 ( )x y C 2 ( )x y C y - its general
1
n
2
n
decision. We search the partial decision of LNDE of the n-th
order as a sum
*
y C ( )x y C ( )x y C y (6.10)
1 1 2 2 n n
in what function C k ( ) ,x k 1,2, ,n we find from the system
of equations
C y C y C y 0
1 1 2 2 n n
C y C y C y 0
1 1
n
n
2
2
. (6.11)
C y (n 2) 1 C y (n 2) 2 C y (n 2) n 0
1 2 n
C y (n 1) 1 C y (n 1) 2 C y (n 1) n f ( )x
1 2 n
According to Wronski-Determinante the last system of
linear differential equations is consistent.
6.2 Linear Heterogeneous Differential Equations of the
n-th Order With Constant Coefficients and Special Type of
the Right Part
We will consider the LNDE of the n-th order with the
constant coefficients of kind
y (n ) a y (n ) 1 ... a y a y f (x ) (6.12)
1 n 1 n
87