Page 15 - 4549
P. 15

P   x   Q   y
                                                            1  dx    2  dy    0                           (1.16)
                                                  P   x   Q   y
                                                   2          1

                                                  Q   y      P   x
                                               or          2  dy     1  dx                              (1.17)
                                                  Q   y      P   x
                                                    1           2

                                 which has a general integral

                                                  P   x    Q   y
                                                           1  dx    2  dy   C                          (1.18)
                                                  P   x    Q   y
                                                   2           1

                                                  Q   y       P   x
                                              or         2  dy      1  dx   C   .                   (1.19)
                                                  Q   y      P   x
                                                   1             2

                                     We will notice that division on      yQxP   can be caused to
                                                                    2     1
                                 the  loss  of  decisions  of  differential  equation,  that
                                 P    0x  , Q    0y  . These cases are the upshots of equations
                                   2          1
                                 it is necessary to check additionally.
                                     Now we will consider concrete examples.
                                     Example 1.2 To find the common decision of equation
                                      e y  1 x 2 dy    2x 1 e y  dx    . 0
                                       For the separation of variables we will divide both parts
                                 of   equation   on   expression   1  x 2   1  e y     and   get
                                  e y  dy  2xdx
                                                 0     then       let      us      integrate
                                 1 e y  1 x 2
                                     e  y dy   2 xdx
                                          
                                        y        2    C , as a result will write down a general
                                    1   e     1   x
                                 integral   ln 1  e  y   ln   1  x 2   ln  C ,   from   where   have
                                 1 e   y  C 1 x  2  .  It  is  more  comfortable  type  of  general
                                 integral, from which it is possible to get the common decision
                                       y    ln C   1 x  2   .1

                                                               13
   10   11   12   13   14   15   16   17   18   19   20