Page 113 - 4549
P. 113

(a   ) r  a 2        (2 r  ) 2
                                        1
                                                                                2
                                                                                        4
                                                     0                 0  (r   5r    0).
                                         b   (b   ) r        1 (3 r  )
                                          1    2

                                                                                4
                                 solutions of characteristic equation :  r   1 , r  .
                                                                    1       2
                                     We put in  (7.16)  r   r   1 . Then :
                                                          1
                                          2   0 ,
                                              1
                                        1
                                      
                                          2   0 .
                                        1
                                              1
                                                                   1
                                     If  to  take   1,  then       .  Consequently,  one  of
                                                 1            1
                                                                   2
                                 decisions of the system (6.14) is
                                           1 
                                     Y     1    e t
                                      1
                                               .
                                            2 
                                     If in  (7.16)  to lay    down r   r   4
                                                                   2

                                                    2   2   0 ,
                                                        2
                                                             2
                                                  
                                                               0 .
                                                       2    2
                                     We  will  take   1,  then     1.    We  get  the  second
                                                    2             2
                                                              1 
                                                                   4t
                                 decision of the system : Y      e  .
                                                         2      
                                                               1  

                                          The common decision is linear combination of the found
                                 decisions :
                                                 1 
                                       x          t      1    4t
                                          C 1  1    e   C 2    e  .
                                                             1
                                       y
                                                         
                                                2 
                                                               111
   108   109   110   111   112   113   114   115   116