Page 114 - 4549
P. 114

In a scalar form it is possible to write down so:
                                            t
                                      x   C e   C e 4t  ,
                                           1     2
                                           1    t      4t
                                      y    C e   C e  .
                                                     2
                                              1
                                           2
                                     C  and C   we find from initial conditions :
                                       1      2
                                       2   x (0)   C   C 2  ,
                                                  1
                                      
                                       1          1
                                          y (0)    C   C 2  .
                                                       1
                                       2          2
                                     Consequently C    C   1 .
                                                    1    2
                                     Answer :
                                             t
                                      x ( )t   e   e 4t  ,
                                              1  t   4t
                                      y ( )t    e   e  . 
                                              2
                                     Exercises:

                                     1. To solve the system of differential  equations:

                                       dy                            dx             3x
                                       dx    2y   4z   cos x  ;    dt    5x   3y   2e  ;
                                      
                                                                    
                                   а)                               b)   
                                       dz     y   2z   sin .x    dy    x   y   5e  t   .
                                        dx                           dt

                                     2. To solve Cauchy task:
                                         dx                      dx
                                         dt    3x   y   0 ;    dt    2x   y   0 ;
                                       
                                                                 
                                                                
                                    a)   dy                       b)  dy
                                            x   y   0 ;            x   2y   5 sin ;e t  t
                                          dt                      dt
                                       x (0) 1 , (0) 1.y          x (0)   0 , (0)y    0 .
                                                               112
   109   110   111   112   113   114   115   116