Page 108 - 4549
P. 108

Example 7.2  To find solutions of the system of equations .
                                           dy
                                           dx   2y z   sin ,x
                                           dz
                                               4y  2z   cos x  .
                                           dx

                                        We differentiate the first equation on  x :
                                                    2
                                                   d y    dy   dz
                                     .                         2      cos x           (7.6)
                                                   dx  2  dx   dx

                                     From  the  first equation of the given system  we determine
                                                      dy
                                 z :    z   sin x   2y   .  We  put  this  value  in  the  second
                                                      dx
                                 equation of the system. Obsessed:

                                      dz                      dy
                                           4y   2sin x   4y   2    cos x
                                      dx                      dx
                                     or
                                      dz                   dy
                                           cos x   2sin x   2  .
                                      dx                   dx
                                                            dz
                                     We put the found value      in equation  (7.6) :
                                                            dx
                                            2
                                          d y     dy                    dy
                                                 2    cos x   2sin x   2    cos x
                                          dx 2    dx                    dx
                                     or
                                            2
                                          d y
                                                 2sin x  .
                                           dx 2
                                     It is equation of the second order. Integrating him twice, we
                                 find
                                      y   2sin x C x C    .
                                                   1     2
                                     Putting   y  and    y   into equation (6.2), we will find
                                      z   sin x   4sin x   2C x   2C   2cos x C  
                                                          1      2            1
                                                               106
   103   104   105   106   107   108   109   110   111   112   113