Page 111 - 4549
P. 111

(a   ) r  a     a
                                               1        2       3
                                               b   (b   ) r  b       0
                                                  1    2        3                                 (7.11)
                                                 c      c    (c   ) r
                                                  1      2     3

                                     Equation (7.11)   is algebraic  equation  relatively  r . Name
                                 him characteristic equation of  the  system of  linear differential
                                 equations with constant coefficients.
                                     There is this equation of the third degree in our case.
                                     We  will  consider  a  case,  when  equation  (7.11)  has  three
                                 actual  different  roots  r  , ,r r .  By  turns  we  put  each  of  these
                                                       1  2  3
                                 roots    r     in  the  system  (7.10)  and  determine  unknowns
                                          i
                                   ,   , .
                                   i  i  i
                                     It  is  possible  to  lead  to  that  the  common  decision  of  the
                                 system of differential equations (7.8) in this case has a kind:
                                                          2 r t
                                                 1 rt
                                       x   C   e   C   e   C   e  3 r t  ;
                                            1 1       2  2     3  3
                                                 1 rt
                                                          2 r t
                                       y   C   e   C   e   C   e  3 r t  ;
                                             1  1     2  2     3  3                                 (7.12)
                                                1 rt
                                                         2 r t
                                       z   C   e   C   e   C   e  3 r t  .
                                            1 1      2 2      3 3
                                     In a vector form we will write down the common decision
                                 so:
                                                                   
                                                ( )Y t   C Y  ( )t   C Y  ( )t   C Y  ( )t                        (7.13)
                                                   1 1
                                                            2 2
                                                                     3 3

                                 where

                                          x ( )t      1           2            3 
                                                                           
                                 Y ( )t     y ( ) , ( )t    Y t         e  1 rt  ,Y  ( )t         e  2 r t , ( )Y t        e  3 r t .
                                              1       1    2       2     3       3  
                                                                                  
                                          z ( )t      1            2           3 
                                                                                                                            (7.14)
                                                               109
   106   107   108   109   110   111   112   113   114   115   116