Page 9 - 106
P. 9

8


                                              ТЕОРЕТИЧНІ ЗАСАДИ

                                ГРАВІМЕТРИЧНОЇ Й МАГНІТОМЕТРИЧНОЇ
                                                      РОЗВІДКИ


                                     РОЗДІЛ 1 ГРАВІТАЦІЙНИЙ І МАГНІТНИЙ
                                                ГЕОПОТЕНЦІАЛИ ТА НОРМАЛЬНИЙ
                                                РОЗПОДІЛ ПОЛІВ

                                  Абсолютні  значення  сили  тяжіння  біля  поверхні  Землі
                            виражаються  восьмизначними  числами.  Збурення  поля,
                                                                                           -5
                            зумовлені  будовою  земної  кори,  не  перевищують  n10010
                               2
                            м/с .  Для  вивчення  збурень  (аномалій)  поля  такої  малої
                                                                                            -5
                            інтенсивності спостереження виконують з точністю в 0.0110
                               2
                            м/с   та  зі  спостережень  виключають  вплив  сили  притягання
                            земного  сфероїду  і  дію  відцентрових  сил.  Сума  цих  сил
                            називається  нормальним  полем  і  розраховується  за  так
                            званими нормальними формулами.
                                  Аномалії  поля  сили  тяжіння  (аномалії  гравітаційного
                            поля)  g а ,  зумовлені  земною  корою  і  верхньою  мантією,
                            отримують як різницю:

                                                  g a   g     ,                   (1.1)

                            де g – спостережене поле сили тяжіння;
                               – нормальне поле.

                                                     
                                  Магнітне  поле  B   біля  поверхні  Землі  є  сумою
                                                      T
                            наступних складових:

                                                               
                                            B    B   B    B    B ,                (1.2)
                                              T     0    m     a     e
   4   5   6   7   8   9   10   11   12   13   14