Page 81 - 6637
P. 81

Solved Problems


                                                               Z  a
                                            a          nπb     2                 nπx
                                  α = −        sech                   g (x) sin           dx
                                    n
                                                                       1
                                           nπ            a     a   0                a
                                                     ∞

                                                    X            nπx             nπy
                                        u(x, y) =       β sin            cosh
                                                          n
                                                                   a              a
                                                    n=1
                                                            Z  a
                                                    nπb     2                 nπx
                                     β = sech                     g (x) sin            dx
                                                                    2
                                       n
                                                     a      a  0                 a
                   Now we solve the problem for v.
                                       v xx  + v yy  = 0,  0 < x < a,      0 < y < b,

                                           v(0, y) = f (y),      v(a, y) = f (y),
                                                                              2
                                                        1
                                                v (x, 0) = 0,     v(x, b) = 0
                                                 y
               We substitute the separation of variables u(x, y) = X(x)Y (y) into Laplace’s equa-
               tion.
                                                     X  00      Y  00    2
                                                          = −       = λ
                                                      X         Y
               We have the eigenvalue problem,


                                              00
                                                       2
                                                                0
                                            Y = −λ Y,         Y (0) = Y (b) = 0,
               which has the solutions,


                                      (2n − 1)π                     (2n − 1)πy
                               λ =                ,   Y = cos                       ,   n ∈ N.
                                 n
                                                        n
                                           2b                            2b
               The equation for X(y) becomes,


                                                                       2
                                                          (2n − 1)π
                                                   00
                                                 X =                      X .
                                                                             n
                                                   n
                                                               2b
               We choose solutions that satisfy the conditions, X(a) = 0 and X(0) = 0, respec-
               tively.

                                           (2n − 1)π(a − x)                 (2n − 1)πx
                                   sinh                            , sinh
                                                    2b                           2b
               The solution for v(x, y) has the form,

                            ∞
                           X        (2n − 1)πy                (2n − 1)π(a − x)                (2n − 1)πx
                v(x, y)=        cos                  γ sinh                        +δ sinh                    .
                                                                                      n
                                                      n
                                          2b                           2b                          2b
                           n=1
               We determine the coefficients from the inhomogeneous boundary conditions.

                                      ∞
                                                    (2n − 1)πy              (2n − 1)πa
                                     X
                          v(0, y) =       γ cos                     sinh                    = f (y)
                                           n
                                                                                                 1
                                                         2b                      2b
                                      n=1
                                                              77
   76   77   78   79   80   81   82   83   84   85   86