Page 47 - 6637
P. 47

Supplementary Problems


               Exercise 137. (a) Solve the problem


                                     
                                     u − u     xx  = 0             0 < x < ∞, 0 < t,
                                         tt
                                     
                                        u(0, t) =   t               0 ≤ t,
                                                   1+t
                                     
                                        u(x, 0) = u (x, 0) = 0 0 ≤ x < ∞.
                                     
                                                     t
                   (b) Show that the limit lim u(cx, x): = φ(c) exists for all c > 0. What is the
                                               x→∞
               limit?


               Exercise 138. Consider the Cauchy problem

                                      u − 4u   xx  = F(x, t), −∞ < x < ∞, t > 0,
                                       tt

                                   u(x, 0) = f(x), u (x, 0) = g(x), −∞ < x < ∞,
                                                        t
                                 
                                   x,        0 < x < 1,
                                 
                                 
                                                                      (
                                 
                                   1,        1 < x < 2,                   1 − x , |x| < 1,
                                                                               2
               where f(x) =                                   g(x) =                           and F(x, t) =
                                   3 − x, 2 < x < 3,                      0,         |x| > 1
                                 
                                 
                                 
                                 
                                   0,        x > 3, x < 0,
                                 
                    x
               −4e on t > 0, −∞ < x < ∞.
                 (a) Is the d’Alembert solution of the problem a classical solution? If your answer
                     is negative, find all the points where the solution is singular.
                (b) Evaluate the solution at (1, 1).
               Exercise 139. Solve the problem

                                                     x
                                    u − 4u    xx  = e + sin t, −∞ < x < ∞, t > 0,
                                      tt
                                               u(x, 0) = 0 − ∞ < x < ∞,

                                                           1
                                           u (x, 0) =            − ∞ < x < ∞.
                                             t
                                                        1 + x  2

               Exercise 140. Find the general solution of the problem u −u               xxx  = 0, u (x, 0) =
                                                                                                     x
                                                                                   ttx
               0, u (x, 0) = sin x, in the domain {(x, t)| − ∞ < x < ∞, t > 0}.
                    xt
               Exercise 141. Solve the problem


                                         u − u   xx  = xt, −∞ < x < ∞, t > 0,
                                          tt

                                               u(x, 0) = 0 − ∞ < x < ∞,

                                                            x
                                              u (x, 0) = e − ∞ < x < ∞.
                                                t







                                                              43
   42   43   44   45   46   47   48   49   50   51   52