Page 43 - 6255
P. 43
рівнює g. Тоді для [n(n-1)-g] пар ділянок здійснюється перехресний
«внутрішній» прогноз з еталона на еталон.
Обчислюють похибки прогнозу
, (5.4)
та їхнє середньоквадратичне значення
Дієвість моделі прогнозу вважається доведеною з імовірністю 0,9,
якщо величина 1,65σ менша за наперед задану граничну похибку
ΔQ
прогнозування. Якщо середньоквадратична похибка σ виявиться
ΔQ
надмірно великою, то або коефіцієнт аналогії не враховує впливу істотних
параметрів і спосіб його обчислення треба скоректувати, або сама модель у
цьому випадку не придатна для розрахунків.
Після доказу дієвості моделі прогнозна оцінка запасів кожної
розрахункової ділянки ведеться за всіма придатними еталонами з
використанням формули (5.3). Шукається середнє значення одержаних на
розрахунковій ділянці незалежних оцінок:
де n-h – загальна кількість еталонів, за якими коректно (з
дотриманням умови 0,5< К <2,0) оцінена розрахункова ділянка.
ан
Якщо на розрахунковій території є перспективні структури і
родовища, то із зробленої оцінки початкових сумарних ресурсів
віднімають їхні запаси (категорій А+В+С +С ) і перспективні ресурси
1
2
категорії С . При цьому використовують попередньо оцінені коефіцієнти
3
достовірності ресурсів категорії С .
3
Якщо на основі опосередкованих даних можна заздалегідь
припустити, що характерні для еталонної ділянки поклади поширені тільки
на частині d розрахункової площі, то в формулу (5.3) потрібно ввести
відповідний поправковий коефіцієнт (Q =ρ dS K ). Можна також
p
aн
p
e
зменшити зведений коефіцієнт аналогії або ефективну площу
розрахункової ділянки на d(К' =dK або S' =dS ). Подібні співвідношення
p
aн
ан
р
між еталонними і розрахунковими ділянками найчастіше спостерігаються
в ділянках розвитку покладів стратиграфічно, літологічно або тектонічно
екранованих типів.
43