Page 89 - 6099
P. 89

Let
                                                          ∞
                                                         X         p
                                                 f(x) =      f n cos( λ n x)
                                                         n=1
                                                          ∞
                                                         X         p
                                                 g(x) =      g n cos( λ n x).
                                                         n=1

                   From the initial value we have
                                            ∞                   ∞
                                           X       p            X         p
                                               cos( λ n x)a n =    f n cos( λ n x)
                                           n=1                  n=1
                                                          a n = f n .


                   The initial velocity condition gives us

                                          ∞                        ∞
                                         X       p      p         X         p
                                             cos( λ n x) λ n b n =    g n cos( λ n x)
                                         n=1                      n=1
                                                               g n
                                                         b n = √   .
                                                                λ n
                       Thus the solution is

                                          ∞
                                         X       p               p                  p
                                                                            g n
                                u(x, t) =    cos( λ n x) f n cos( λ n t) + √    sin( λ n t) .
                                                                             λ n
                                          n=1
                   8.5      General Method


                   Here is an outline detailing the method of separation of variables for a linear partial
                   differential equation for u(x, y, z, . . .).


                      1) Substitute u(x, y, z, . . .) = X(x)Y (y)Z(z) · · · into the partial differential equation.
                         Separate the equation into ordinary differential equations.

                      2) Translate the boundary conditions for u into boundary conditions for X, Y , Z,
                         . . .. The continuity of u may give additional boundary conditions and boundedness
                         conditions.

                      3) Solve the differential equation(s) that determine the eigenvalues. Make sure to
                         consider all cases. The eigenfunctions will be determined up to a multiplicative
                         constant.

                      4) Solve the rest of the differential equations subject to the homogeneous boundary
                         conditions. The eigenvalues will be a parameter in the solution. The solutions will
                         be determined up to a multiplicative constant.





                                                             82
   84   85   86   87   88   89   90   91   92   93   94