Page 88 - 6099
P. 88

λ = 0. The general solution is
                                                           ψ = ax + b.


                                                         0
                                                       ψ (0) = 0   ⇒     a = 0.
                                                         0
                                               ψ(1) + ψ (1) = 0    ⇒     b + 0 = 0.
                         Thus λ = 0 is not an eigenvalue.

                    λ > 0. The general solution is

                                                            √             √
                                                  ψ = a cos( λx) + b sin( λx).

                                                   0
                                                 ψ (0)   ⇒     b = 0.
                                                                    √        √      √
                                              0
                                     ψ(1) + ψ (1) = 0    ⇒     a cos( λ) − a λ sin( λ) = 0
                                                                   √      √       √
                                                         ⇒     cos( λ) =    λ sin( λ)
                                                               √         √
                                                         ⇒       λ = cot( λ)

                         By looking at Figure 8.1, (the plot shows the functions f(x) = x, f(x) = cot x and
                         has lines at x = nπ), we see that there are an infinite number of positive eigenvalues
                         and that
                                                                2
                                                     λ n → (nπ) as n → ∞.
                         The eigenfunctions are
                                                                  p
                                                        ψ n = cos( λ n x).


                    10
                       y



                     5




                                                                                x
                            1     2     3     4     5     6     7     8    9     10


                                              Figure 8.1: Plot of x and cot x.


                       The solution for φ is
                                                         p               p
                                            φ n = a n cos( λ n t) + b n sin( λ n t).

                   Thus the solution to the differential equation is
                                             ∞
                                            X       p             p               p
                                  u(x, t) =     cos( λ n x)[a n cos( λ n t) + b n sin( λ n t)].
                                            n=1


                                                             81
   83   84   85   86   87   88   89   90   91   92   93