Page 31 - 6099
P. 31

To put the wave equation in the form of Equation 3.13 we make a change of
                   variables


                                            σ = ξ + ψ = 2x,     τ = ξ − ψ = 2ct
                                                           2
                                                    u tt − c u xx = s(x, t)
                                                                     σ τ
                                                           2
                                                  2
                                                4c u ττ − 4c u σσ = s   ,
                                                                      2 2c
                                                                1    σ τ
                                                u σσ − u ττ = −   s    ,
                                                               4c 2   2 2c
                   Example 3.2 Consider
                                                               2
                                                      2
                                                     y u xx − x u yy = 0.
                   For x 6= 0 and y 6= 0 this equation is hyperbolic. We find the new variables.

                                p
                                    2 2
                        dy         y x       x                     y 2     x 2                2    2
                            = −         = − ,     y dy = −x dx,       = −     + const,   ξ = y + x
                        dx         y 2       y                     2       2
                                  p
                                      2 2
                            dy      y x      x                   y 2   x 2
                                                                                           2
                               =          =   ,  y dy = x dx,       =     + const,   ψ = y − x  2
                            dx      y 2      y                   2     2
                       We calculate the derivatives of ξ and ψ.
                                                    ξ x = 2x     ξ y = 2y
                                                    ψ x = −2x ψ y = 2y

                   Then we calculate the derivatives of u.


                                                     u x = 2x(u ξ − u ψ )
                                                     u y = 2y(u ξ + u ψ )
                                                  2
                                         u xx = 4x (u ξξ − 2u ξψ + u ψψ ) + 2(u ξ − u ψ )
                                                  2
                                         u yy = 4y (u ξξ + 2u ξψ + u ψψ ) + 2(u ξ + u ψ )
                   Finally we transform the equation to canonical form.


                                                               2
                                                      2
                                                     y u xx − x u yy = 0
                                                 2 2
                                                             2
                                     2 2
                                                                             2
                                 −8x y u ξψ − 8x y u ξψ + 2y (u ξ − u ψ ) + 2x (u ξ + u ψ ) = 0
                                             1        1
                                          16 (ξ − ψ) (ξ + ψ)u ξψ = 2ξu ξ − 2ψu ψ
                                             2        2
                                                            ξu ξ − ψu ψ
                                                     u ξψ =
                                                                     2
                                                               2
                                                            2(ξ − ψ )
                   Example 3.3 Consider Laplace’s equation.
                                                       u xx + u yy = 0





                                                             24
   26   27   28   29   30   31   32   33   34   35   36