Page 54 - 4811
P. 54

Finding the Impulse Function Using Laplace Transform
                .

                   The impulsive response is

                                                  (                   )
                                                     1        1             1
                                               −1                              −2t
                                     y(t) = L                            = e       sin 2t.
                                                               2
                                                     2 (s + 1) + 2   2      4
               . . . .

                .



                   Example 3.2, A 16 g weight is attached to a spring with a spring
                   constant equal to 2 g/m. Neglect damping. The weight is released
                   from rest at 3 m below the equilibrium position. At t = 2π sec,

                   it is struck with a hammer, providing an impulse of 4 g-sec.
                   Determine the displacement function y(t) of the weight.
               . . . . .

                .


                   Solution. This situation is modelled by the initial value problem

                                    16
                                       y + 2y = 4δ(t − 2π), y(0) = 3, y (0) = 0.
                                                                                 ′
                                         ′′
                                    32
                   Apply Laplace transform to both sides to obtain


                                              2
                                             s Y (s) − 3s + 4Y (s) = 8e      −2πs .

                   Solving for Y (s) we find

                                                             3s        e −2πs
                                                 Y (s) =           +         .
                                                                       2
                                                            2
                                                           s + 4      s + 4
                   Now take the inverse Laplace transform to get

                                           −1
                                 y(t) = L [Y (s)] = 3 cos 2t + 8u (t − 2π)f(t − 2π)
                                                                        0
                   where
                                                               1         1
                                                       −1
                                             f(t) = L {            } =     sin 2t/
                                                             2
                                                            s + 4        2
                   Hence,

                    y(t) = 3 cos 2t + 4u (t − 2π) sin 2(t − 2π) = 3 cos 2t + 4u (t − 2π) sin 2t
                                                                                         0
                                            0
                   or more explicitly

                                                  {
                                                     3 cos 2t,              t < 2π,
                                          y(t) =
                                                     3 cos 2t + 4 sin 2t, t ≥ 2π.
               . . . .


                                                              53
   49   50   51   52   53   54   55   56   57   58   59