Page 67 - 4749
P. 67

1
                                           ;
                           1       1     2    3 
                              E
                               1
                                          ;              (3.25)
                           2       2      3   1 
                               E
                               1
                                          .
                           3       3     1    2 
                               E
             The  dependences  (3.25)  express  the  generalized  Hooke's  law
           for an isotropic body.

           3.8 Changing the volume of the body in deformation

             Denote the sizes of the sites of the elementary parallelepiped to
           deformation  through  dx ,  dy   and  dz   (fig.  3.12).  After

           deformation, these sizes are equal  dx   dx ,  dy   dy ,  dz   dz .
                                                      2
                                         dz+ dz
                      dz           V 0
                                           dy
                      dy                   dy+    3         1


                            dx                 dx+ dx 


                                     Figure 3.12

             The initial volume of the parallelepiped is denoted V  and after
                                                                 0
           deformation  –  V .  Find  the  absolute  volume  change  of  the
                            1
           parallelepiped:







                                          67
   62   63   64   65   66   67   68   69   70   71   72