Page 76 - 4670
P. 76

UNIT 6


                                              MAP PROJECTIONS



                        I.  READING AND LEARNING


                        Task  1.  Read and  memorize  the following  words and word-

                        combinations.
                             planar – плоский;

                             compass direction – напрям по компасу;
                             to distort – cпотворювати;
                             scale – шкала, масштаб;

                             map projection – картографічна проекція;
                             cartographer – картограф;
                             equal-area map – відображення, що зберігає площу;

                             conformal – рівнокутний, конформний;
                             equi-distant  map  –  карта,  яка  відображає  рівновіддалені
                             відстані;

                             navigational map – навігаційна карта;
                             dimensional – вимірний (наприклад, три-вимірний)


                        Task 2. Read and translate the text.

                                                Text 1 Map projection

                        It is impossible to accurately represent the spherical surface of the
                  Earth on a flat piece of paper. While a globe can represent the planet
                  accurately, a globe large enough to display most features of the Earth

                  at a usable scale would be too large to be useful, so we use maps. Also
                  imagine peeling an orange and pressing the orange peel flat on a table
                  - the peel would crack and break as it was flattened because it can't

                  easily  transform  from  a  sphere  to  a plane.  The  same  is  true  for  the
                  surface of the Earth and that's why we use map projections.
                        The  term  map  projection  can  be  thought  of  literally  as  a
                  projection. If we were to place a light bulb inside a translucent globe

                  and  project  the  image  onto  a  wall  -  we'd  have  a  map  projection.
                  However, instead of projecting a light, cartographers use mathematical
                  formulas to create projections.

                        Maps are called projections because map-makers have to project a
                  3-D surface onto a 2-D map. A projection is a representation of one
                                                              76
   71   72   73   74   75   76   77   78   79   80   81