Page 34 - 4660
P. 34

Bernoulli trials and limit theorems



               Using this theorems for large n we can write an approximate formula of probability P{k 1 ≤ µ n ≤
               k 2 }. We denote
                                                   √                   √
                                             k 1 = a npq + np, k 2 = b npq + np.
               Then
                      {                  }
                             µ n − np             √                     √
                    P   a ≤ √         ≤ b   = P{a npq + np ≤ µ n ≤ b npq + np} = P{k 1 ≤ µ n ≤ k 2 } ≈
                                npq
                                                     b
                                                    ∫                  ∫ x 2
                                                 1       x 2       1        x 2
                                              ≈        e −  2 dx = √     e −  2 dx,
                                                 2π                2π
                                                    a                 x 1
               where
                                                      k 1 − np        k 2 − np
                                                 x 1 = √      , x 2 = √       .
                                                         npq             npq
               For simplicity we introduce an Laplace function
                                                                   x
                                                                  ∫
                                                              1        t 2
                                                    Φ(x) = √        e −  2 dt
                                                              2π
                                                                  0
               But
                                              x 2          x 2          x 1
                                             ∫            ∫            ∫
                                                  x 2          x 2           2
                                                e −  2 dx =  e −  2 dx −  e −x  2dx,
                                             x 1          0            0
               then we obtain
                                                                      (         )     (         )
                                                                        k 2 − np        k 1 − np
                             P{k 1 ≤ µ n ≤ k 2 } ≈ Φ(x 2 ) − Φ(x 1 ) = Φ  √       − Φ    √                 (4.9)
                                                                           npq             npq
                  1. Φ(x) is odd function: Φ(−x) = −Φ(x).
                                                          −x   2
                                                       1  ∫  −  t
                     PROOF. In integral Φ(−x) = √           e  2 dt we substitute t = −u. Then dt = −du, Φ(−x) =
                                                       2π
                                                          0
                            x
                           ∫    u 2
                         1    −
                     − √     e  2 du = −Φ(x).                                                                 2
                         2π
                           0
                  2. Φ(0) = 0; Φ(+∞) = 0, 5 i Φ(−∞) = −0, 5 ⇒ lines y = 0, 5 and y = −0, 5 are asymptotes
                     of function for x → +∞ and x → −∞ respectively.
                                                          ∞    2                    √                    √
                                                          ∫    t
                                                       1     −
                     PROOF. InintegralΦ(+∞) = √             e  2 dtwesubstitutet = u 2.Thenwehavedt =      2du,
                                                        2π
                                                          0
                                                     √    ∫                 √     √
                                                       2             2        2     π    1
                                                                ∞ −u
                                          Φ(+∞) = √          +0 e     du = √     ·     = .
                                                       2π                     2π    2    2
                  3. Φ(x) is an increasing function.
               Φ(x) is tabulated for 0 ≤ x ≤ 5. For negative values −5 ≤ x ≤ 0 we can use that Φ(x) is an odd
               function.
               Example 4.6. If a single six-sided die is rolled 600 times, what is the
               probability that a ’six’ is thrown exactly 100 times?                  Find probability that
               ’six’ is thrown from 90 to 110 times?                                                          ,
                                                                                                   5
               Solution. We have n = 600; k = 100; p = 1/6; np = 100; npq = 100 ·                  6  = 83, (3);
               √                       k−np                    f(0)    0,3989
                 npq = 9, 1287; x 0 = √     = 0; P 600 (100) ≈ √    =        = 0, 0437; P{90 ≤ µ 600 ≤ 110} ≈
                                        npq                     npq    9,1287
                 (       )      (     )
               Φ   110−np  − Φ   90−np  = Φ(1, 095) − Φ(−1, 095) = 2Φ(1, 095) = 2 · 0, 36324 = 0, 72648.
                    √
                                  √
                     npq           npq
                   We remark that (4.8) and (4.9) provide good approximation when npq ≥ 10. In other cases
               approximate Poisson formulas are better.

                                                              34
   29   30   31   32   33   34   35   36   37   38   39