Page 62 - 4560
P. 62

The  calculations  on  the  stability  of  the  critical  stress  is
          devastating as liquid limit or boundary strength calculations for
          strength.  Therefore,  we  introduce  the  concept  of  allowable
          stresses for resistance   :
                                  ст
                               ст    кр  k ,
                                           ст
          where  k  – factor of stability.
                  ст
          Stability  condition  requires  that  the  tension  that  arises  when
          compressed, will not exceed the allowable stress for resistance:
                                  P
                                 max     ст  .
                                   F

          However,  calculating  the  allowable  stress  for  resistance  is
          complicated by the fact that the critical stress depends not only on
          the material properties, but also the flexibility of the rod.
          We find the relationship between the allowable stress on stability
          and allowable stress for compressive strength:
                              ст      кр n н     ,
                                  k   н                          (5.22)
                              
                                      ст

          where       n  – allowable stress;  n  – factor of safety,
                  
                        н  н                     н
                                     для пластичних матеріалів
                               , n  for plastic material;     ;
                   н ,n н     Т  Т
                                        for fragile materials.
                              м , n   для крихких матеріалів .
                                   м

          The required dependence
                                ст      ,                   (5.23)
          where    – the main factor reducing the allowable stress in the
          calculation of the stability.
          The  coefficient     for  each  material  can  be  determined  at  any
          value of flexibility and represented as a table or graph depending
            on  .
          Thus,  given  the  dependence  (5.23)  stability  condition  takes  the
          form




                                         62
   57   58   59   60   61   62   63   64   65   66   67