Page 26 - 4560
P. 26

    .          (2.5)
                    nm    mn

          2.3  Kastyliano’s Theorem

                 Moving the point of application of the generalized force in
          the direction of  its action  is partial derivative of the expression
          for the potential energy of deformation of this force.
                                        U
                                        .                          (2.6)
                                   p
                                        P
                 Substituting  expression  (2.2)  into  the  formula  (2.6)  and
          use the parameter differentiation rule, we obtain
                N dx N      M dx M       M dx M      M dx M   y
                                                           y
           p 
                x     x     x     x      z    z            .  (2.7)
               l  EF  P   l  EJ  k   P  l  EJ  z   P  l  GJ  y   P
                 For example, in the flat bending problems deflection at the
          point of application of concentrated force  P  is
                                                    i
                                U    M dx M
                           y          z      z  ,                 (2.8)
                            i
                                P     EJ     P
                                 i   l    z    i
          and the angle of rotation where the applied concentrated moment
          M  will be
             i
                                U     M dx M
                                     z      z  .                 (2.9)
                           i
                                M      EJ    M
                                  i   l    z    i
                                                      Let’s  determine  the
                                              deflection of the free end of
                                              the  cantilever  beam  (fig.
                                              2.3).  Bending  moments  in
                                              any  cross-section  of  the
                                              beam
                                                         qx 2    M
                                              M    Px     , а     z    x .
                                                z         2       P
                                                     According  to  the
                      Figure 2.3              formula  (2.8)  the  sought
          deflection






                                         26
   21   22   23   24   25   26   27   28   29   30   31