Page 13 - 6637
P. 13

Chapter 2





               First-order linear equations






               2.1      Solved Problems

               Exercise 25. Find the general solution of 3u − 2u + 4u = x − 5y.
                                                                              y
                                                                      x
                   The characteristic change of coordinates for this equation is given by

                                                        ξ = 3x − 2y
                                                        η = −2x − 3y

               From these we can also find the expressions of x and y in terms of (ξ, η). In

               particular notice that
                                                      x − 5y = ξ + η.

               In the characteristic coordinates the equation reduces to


                                                    13u + 4u = ξ + η.
                                                         ξ
               The general solution of the homogeneous equation associated with the above equa-
               tion is
                                                                4
                                                      u = e   −  13 ξ f(η),
                                                        h
               and the particular solution will be


                                     Z   ξ + η                      13                  169
                                  4
                                                                                  4
                                                              4
                                                 4
                                                                                               4
                        u = e   − 13 ξ          e 13  ξ dξ = e − 13  ξ  ·  (ξ + η)e 13  ξ  −  e  13 ξ  =
                          p
                                           13                         4                  16
                                                       13              169
                                                    =     (ξ + η) −
                                                        4              16
               Adding these two will give the general solution to the nonhomogeneous equation
                                        u(ξ, η) = e  −  13 ξ f(η) +  13 (ξ + η) −  169 .
                                                       4
                                                                   4               16
               Finally, substituting the expressions for ξ and η in terms of (x, y), we will obtain
               the solution


                               u(x, y) = e  − 13 (3x−2y) f(−2x − 3y) +    13 (x − 5y) −    169  .
                                              4
                                                                           4                16


                                                               9
   8   9   10   11   12   13   14   15   16   17   18