Page 111 - 6637
P. 111

Solutions to Exercises


                                                                                            t
                                             R  ∞                                         R R  ∞
               Exercise 156. u(x, t) =           (S(x−y, t)−S(x+y, t))φ(y)dy+                    (S(x−y, t−
                                              0                                            0  0
               s) − S(x + y, t − s))f(y, s)dyds.

                                                 ∞       1          3π(2k − 1)t         π(2k − 1)x
               Exercise 165. a) u =        32h P                cos                sin               ;
                                           π 3  k=1  (2k − 1) 3            l                  l
                            ∞
                        8h P 1         πk       πkx       πkt
               b) u =              sin     sin       cos      .
                        π 2  k=1  k 2   2         l        l

                                         2
                                                                     2
               Exercise 167. λ = β , where tan βl = k/βc and X(x) = sin βx.


               Exercise 169. ω = Nπc/l, where N is any positive integer, provided that g(x)
               and sin Nπx/l are not orthogonal.



               Exercise 170. No resonance for any ω.

                                             P  ∞            cπnt           πnx           2  R  L        πnx
               Exercise 174. u(x, t) =          n=1 (A cos     L  +B sin     L  ), A =   L   0  f(x) sin   L  dx,
                                                                      n
                                                                                    n
                                                       n
                        2
               B =     cπn  R 0 L  g(x) sin  πnx dx, n ≥ 1.
                  n
                                          L

               Exercise 176. u(x, t) = 1 − cos 4πx cos 4πt.

                                               ∞               1       π (2k−1) t   π(2k − 1)x
                                                                              2
                                                                        2
               Exercise 183. a) u =        4l P   (−1)  n−1         e −   l 2   sin               ;
                                           π 2  k=1         2k − 1                        l
                            ∞        1
                                                      2
                                               2
                        8 P                 −π (2k−1) t
               b) u =                      e            sin π(2k − 1)x.
                        π 3  k=1  (2k − 1) 3

                                                     2 2
               Exercise 185.      4  P         1 −n π kt/l 2  sin  πnx .
                                                 e
                                  π    n is odd n                 l

                                                          2 2
                                  P  ∞           πnx −iπ n t 2
               Exercise 186.         n=1 A sin     l  e       l
                                           n

                                                                                 n
                                                       P  ∞   1      πn                   2
               Exercise 189. u(x, t) = frac4π                   (cos     − (−1) )e   −17n t  sin nx.
                                                          n=1 n       2

               Exercise 190. A solution of the heat equation has the form
                                                       2 2
                                       P  ∞        −kπ n t/L 2     πnx                  2  R  L         πnx
                 (a) u(x, t) =   A 0  +       A e              cos     , where A =            f(x) cos      dx,
                                  2       n=1    n                  L             n     L  0             L
                     n ≥ 0.
                 (c) The obtained function is a classical solution of the equation for all t > 0,
                     since if f is continuous the exponential decay implies that for every ε > 0 the

                     series and all its derivatives converge uniformly for all t > ε > 0. For the same
                     reason, the series (without A /2) converges uniformly to zero (as a function
                                                        0

                                                              107
   106   107   108   109   110   111   112   113   114   115