Page 110 - 6637
P. 110

Solutions to Exercises


                                  4
                                                          2
                                                               1 2
               Exercise 129. (e       x+t/4  − e x−t ) + x + t .
                                  5                            4

                                                          2
                                               2
               Exercise 134. u(x, t) = x + t + 3t /2.

               Exercise 136. D’Alembert’s formula implies

                                     1                                1
                         P(x, t) = [f(x + 4t) + f(x − 4t)] + [H(x + 4t) − H(x − 4t)],
                                     2                                8

                                                                
                                                                x       |x| < 1,
                                                                
                                   x
                                 R
               where H(x) =          g(s)ds. Hence H(x) =          1     x > 1,     Notice that at x = 10 :
                                  0                                                                    0
                                                                
                                                                   −1 x < −1.
                                                                
                                                                                                            1
               f(10+4t) = 0, f(10−4t) ≤ 10, |H(t)| ≤ 1, t > 0. Therefore, P(10, t) ≤ 5+ =
                                                                                                            4
                21  < 6, and the structure will not collapse.
                4

               Exercise 138. Unfortunately, this problem is no-trivial. (a) The solution is not
                                                                                          3
                                                                                                   −1
               classical when x ± 2t = −1, 0, 1, 2, 3. (b) u(1, 1) = 1/3 + e − e /2 − e /2.

                                              R                         1
               Exercise 140. u(x, t) =           v(x, t)dx + f(t) = [sin(x − t) − sin(x + t)] + f(t),
                                                                        2
               where f(t) is an arbitrary function.


               Exercise 142. (0, 0) and (1, T).

                                                                √                         √
               Exercise 143. 2u(x, t) = Erf((x + l)/2 kt) − Erf((x − l)/2 kt).


               Exercise 145. e     3x+9kt .


                                    2
               Exercise 147. x + 2kt.


               Exercise 149. v(x, t) satisfies the diffusion equation with initial condition φ(x).


                                             R  ∞         (x−V t−z) 2        dz
               Exercise 150. u(x, t) =             exp[−             ]φ(z) √     .
                                               −∞             4kt            4πkt

                                               √
               Exercise 152. 1 − Erf[x/ 4kt].

                                                                        2
                                                                                        2
               Exercise 153. w(x, t) = (4πkt)         −1/2  R  ∞ (e −(x−y) /4kt  + e −(x+y) /4kt )φ(y)dy.
                                                            0





                                                              106
   105   106   107   108   109   110   111   112   113   114   115