Page 82 - 6099
P. 82

r
                                                                                                       T
                       If the string has density ρ and tension T , then we have seen above that c =      .
                                                                                                       ρ
                   So to increase the frequency of oscillation of a string you increase the tension and/or
                   decrease the density and/or shorten the string.
                   Example 5.1 Solve the following IBVP:
                                          for all 0 < x < 1 and t > 0
                    u tt = u xx
                    u(0, t) = u(1, t) = 0 for all t > 0
                    u(x, 0) = x(1 − x)    for all 0 < x < 1
                    u t (x, 0) = 0        for all 0 < x < 1.
                   This is a special case of equations (8.1)–(8.3) with l = 1, ϕ(x) = x(1−x) and ψ(x) = 0.
                   So, by (8.12),
                                               ∞
                                              X
                                    u(x, t) =     (A n cos (πnt) + B n sin (πnt)) sin (πnx)
                                              n=1
                   with
                                                 1
                                               Z
                                        A n = 2   x(1 − x) sin (πnx) dx,     B n = 0.
                                               0
                   Using the integration by parts formula

                                                   b                 b
                                                  Z                Z
                                                               b


                                                     u dv = uv −     v du
                                                               a
                                                  a                 a
                   we obtain:
                             1
                            Z

                                                                 2
                                     2

                    A n = 2   (x − x ) sin (πnx) dx = u = x − x ; dv = sin (πnx) dx; du = (1 − 2x)dx;
                            0
                                                                                                    
                                                                              1
                                                                             Z

                          1                    1        2            1  1

                   v=−      cos (πnx) =2   −    (x − x ) cos (πnx) +        (1 − 2x) cos (πnx) dx   =
                         πn                    πn                    0   πn
                                                                             0
                      1
                     Z
                        (2 − 4x)                                                             sin (πnx)

                   =             cos (πnx)dx=u=1 − 2x; dv=cos (πnx)dx; du=−2dx; v=                    =
                           πn                                                                   πn
                     0
                                                                            
                                                              1
                                                            Z
                          2     1                    1   2                          4            1


                       =          (1 − 2x) sin (πnx) +         sin (πnx) dx   = −     cos (πnx) =
                         πn    πn                    0   πn                        π n            0
                                                                                    3 3
                                                             0
                                                
                                                         8
                                                                , n = 2k − 1
                                                
                                                     3
                                              =     π (2k − 1) 3
                                                   0,             n = 2k
                                                
                   Thus,
                                                          ∞
                                                      8  X   cos (πkt) sin (πkx)
                                            u(x, t) =                           .
                                                      π 3         (2k − 1) 3
                                                         k=1
                                                             75
   77   78   79   80   81   82   83   84   85   86   87