Page 16 - 4891
P. 16
2
річкової мережі, яка припадає на 1 км площі басейну річки.
Розраховується за формулою:
Д = Σ L / F, (2.5)
де Σ L – сума довжини всіх водотоків у басейні річки, (км).
5 Відношення кількості водотоків даного порядку до
кількості водотоків наступного більш високого порядку більш
менш постійне для всіх порядків в даному басейні. Це
відношення, за Хортоном, називають коефіцієнтом
біфуркації. Його значення більше для гірських басейнів, ніж
для рівнинних; для плоских та горбистих водозборів воно
дорівнює приблизно 2, а для горбистих водозборів – 3-4.
Реальне значення цієї величини можна отримати лише з
великомасштабних топографічних карт, на яких не проведена
генералізація річкової мережі.
6 Між площею басейну F, його середньою шириною В б
та довжиною річки L є досить тісний зв’язок. Він виражається
рівнянням:
L = 2,9 √F, (2.6)
2
де F і L відповідно в км та км. Для невеликих басейнів (з F<
2
250 км ) постійний коефіцієнт складає 1,6. Для гірських річок
величина коефіцієнта може складати 2,4-2,5, тобто дещо
менше, ніж для великих рівнинних річок, в основному
рівнянні, що пояснюється меншою звивистістю гірських річок
порівняно з рівнинними.
Необхідно визначити значення зв’язуючого коефіцієнту
для заданого басейну і пояснити його відмінність від
зазначеного вище:
L = х √F (2.7)
Зв’язок середньої ширини басейну з його площею для
великих басейнів виражається рівнянням:
В б = F / L = 0,35 √‾F км, (2.8)
Ширина басейну в даному випадку отримана діленням
2
площі на довжину річки. Для малих басейнів (F< 250 км )
постійний коефіцієнт збільшується майже вдвічі – малі
15