Page 1 - 4811
P. 1

0,
 >
 s
 −st (t) dt
 −st (t)|dt,
 A
 f
 f
 ∫
 τ
 |e
 ∫
 lim
 θ---real,lim
       ,L,
 0
 A→∞
 0
   t
      0
 τ→0
 =
 ≥
     βL[g(t)].
 −st (t) dt
 αt t
 ,
                       0),
 f
 Me
 ∞
 +
 ∫
                  ≥
 −as (s)(a
 e
 αL[f(t)]
 ≤
 isin θ,
    F
 0,|f(t)|
 =
     sL(f(t))
 =
 F(s)
 +
 e
 0
                            −
 =
 βg(t)]
                   f(0)
 cos θ
 →
 (t)f(t−a))
 =
 −st (t)|dt
 =
              −
 +
 (t))
                      + −
 =
                          )
 iθ
 L[f(t)]
 ′
 f
       n−1 (0
 −1 (s),e
                f
 a
 ′
 a),L(u
 τ
 |e
 ∫
 =
 F
      s
 >
 (t))
                                    =

 tau
 >
 −
                       f)(t)]
 →
 ′
 1, 2, 3, . . . (s
 L
 L(f(t))
 (areal, Re(s)
 + L(f
 =
 0asRe(s)
 ≤

 f(t)
 ).
 n
 −st (t)dt
                    ∗

          L[(1
 f(0
 s
 f
 =
 ]
 =
 ′
     =
 τ
 →

 (t))
 sL(f(t))
 e
 ∫
 n
 (n)
                                     α).
 L(f(t))
 n (t)),
 t
 at (t)),

 α).L(f
              )
                              >
 [∫
 τ
 f
 f
 n
 =

 t
                       (s
 =
 L(e
 (t))
         f(t)
 L((−1)
  (
 F(s)
                                               ̸=
 >
 =
 ′
 L
 α),L(f
 =
                                     (s)]
 F(s−a)
 − (Re(s)
              t
 0
 + L(g(t))
 =
                                    2
                                                      cg,
 L
 d F(s)
 >
 ))
 =
 n
                     [F
 )(Re(s)
 ).
               −1
                          1
                                               f
 f(t
 F(x)dx
 1
 (0
 n
 (n−1)
                                       g
 ds
 +
 + −
                                                          dx.
        0,L
                                                      2
 ∞
 )
                                                 −x
 ∫
                              cf
 f(0
 −t (f(t
                          =
  ≥
 f
 1
 s
                                                e
 t
                    g)
 −
 1
 α).
 s
 f(t),
 · · ·
                 ∗
                                   2
 τ)dτ,c(f
 e
                                             0
 >
                                                              =
 −
 =
                                      π
 n−2 (0+)
                            =
                                                      )dt
 L(f(t))(Re
         h),erf(t)
 ′
                                              − 0
 f
 −
 −1
 f(τ)g(t
                                  (t)δ(t
 1
                                                               >
                              b
 s
 t
 ∫
 0,L
      ∗
                                                          t
 (f
                 −εs
 =
 s
                               iyt (x, y)dy,
 >
 +
                         .
                                a
 0
 =
 L[1]L[f(t)]
 g)
 (t)]
 s
 ,
                 εs
 ∗
 (f
 L[f
 T
 −sT
 =
     =
 ∗
                         xt
                    x+iy ts (s)ds.f(t)
 (s)].(f
                              e
 h)
 1−e
 dt
 −st
              ∞
                       e
 +
                                                                                >
 =
         ∫
 ε
 (g
 ∫
 [F
 L[f(t)]
 −1
                                                                           ,
 2
 e
                                     F
 ∗
      1
 h,f
 1
                                                                 t
                               e
 0
 (s)]L
                                                        c
       2π
                                                          k
 = ε
 ∗
 =
 g)
              ∫
                     x−iy
 [F
 −1
 1
 dt
 −st
 f(a),f(t)
 ∗
     lim
                                           ∞
 (f
                                  ∑
 =
 L
 (t)e
 h)
                                                                                 0,
      y→∞
 ∞
                                =
 ε
 f
 ∗
                                                                          >
 ∫
 (g
 =
 =
                   ).f(t)
                                                                    s
 ∗
 a)dt
 f
 ts (s)ds
 0
                                           −st (t) dt
 =
                                                                           −st (t)|dt,
      Res(z
                  k
 (t)]
 F
 −
                                   A
                                                   f
 f(t)δ(t
 x+i∞
                                                                                   f
 e
 n
 ε
 L[f
 ∑
                                  ∫
 b
 ∫
                                                                    τ
 k=1
 ∫
                                                                        |e
                                                              ∫
                         lim
 x−i∞
                        θ---real,lim
 ).
 a
 =
 1
                                                                                           ,L,
                                                                     0
 f(t
 0
 x+iy ts (s)ds
 2πi
                         A→∞
                                                                                       t
                                                                                          0
                =
                                                        τ→0
 =
 F
                                                                                         βL[g(t)].
                                                                                 ≥
 −st (t) dt
 0f(t)
                                                                    αt t
                                                                         ,
 ∫
                                                                                                           0),
 f
 ∞
                                                              Me
 x−iy
 ∫
                                                                                    +
 1
 e
                                                                   αL[f(t)]
 lim ∞,L[αf(t) e − g)(t) e (F(s)) α).L(f f(τ)dτ sL(f(t)) 1−e −∞ − ∫ (s)F √ ∗ F ∫ 0  e = t k=1 t ∗  (k−1)! = k−1 t −as (s)(a  ≥  −
                                                       ≤
        isin θ,
 2πi
                                                                                        F
 =
                                      0,|f(t)|
 y→∞  =  F(s)  0 cos θ  +      →                βg(t)]        =          =    e    =     sL(f(t))      f(0)     −
                                                    (t)f(t−a))
                                                                                                  −
                                            +
 0.L[f(t)]  −1 (s),e iθ  =  ∫  τ  ′  |e −st (t)|dt  . . .Andriy Bandura,                   n−1 (0         + −
                                                                          (t))
                                                                                 sL(f(t))
                                                                                                              )
                     ∞,L[αf(t)
                                                                        ′
               f
                                                           α).L(f
                                                                                                    f
                                                  a
                                     a),L(u
                                                                           =
 F
                                                     >Ovchar,
                                                                      L(f(t))
 (areal, Re(s)
                                                   + L(f
 =  L     ≤  tau  →           >         Ihor                   ′  (t))             −    s                f)(t)]       =
 f(t)  −st (t)dt    0asRe(s)  1, 2, 3, . . . (s       ).        s n                          L[(1      ∗
                                Oksana
                                             f(0 Vytvytska
   ∫  τ  ′  e  f  →  n  =               −        (t))     =                     ]       =
   L(f(t)) at (t)),  n (t)),  sL(f(t))    (n)                  t      f(τ)dτ                     )                      α).
   τ  =  f  n  t  f  =       α).L(f                        [∫                                             (s     >
 F(s)  =  L(e L((−1)  ′  (t))  >                     =     L                          (     f(t)                                   ̸=
                                                             .
 F(s−a)  =  >  α),L(f ))      + L(g(t))                              0         =     L            t            (s)F     2 (s)]         ∗  cg,
 − (Re(s)
 d F(s)
 n
                                  ).
                                                             F(x)dx
                           (0
 ds  n  +  )(Re(s)  )  f(t  1  (n−1) OPERATIONAL                                                   −1    [F   1         ∗  g   =   f      2   dx.
 + −
                                                                                            0,L
                                                      ∞
                                                ∫
 f(0 −t (f(t  1  −  f                                                            t    ≥                 g)   =    cf      ∫     t   e −x
 s
                                             α).
 1
                                                        s
                                                                       f(t),
                                                                                                                       2
                                                                                    τ)dτ,c(f
 e  −  · · ·                      CALCULUS                                                           ∗               √    π      0                =
                                      >
                                                                =
 n−2 (0+)    L(f(t))(Re                          (F(s))                        −             h),erf(t)          =                − 0      )dt
 ′
                                                                                                                                      t
 f
 s       1                                 −1          ∫    t   f(τ)g(t                                      ∫    b   (t)δ(t                       >
   =        s                 >      0,L            =         0                  +   (f   ∗          −εs     .      a                         t
 L[1]L[f(t)]  L[f  T  (t)]  ,  s (s)].(f  ∗  g)(t)       h)   =    (f   ∗   g)     dt    =    1−e    εs      xt   e iyt (x, y)dy,                   =
                                                                                                                         F
                −sT
         1−e
                                                                           −st
                                                     +
                                                                                                           e
                                                                     ε
                                                (g
                                                               ∫
 L[f(t)]  = (s)]L LECTURES                                                                   ∫    ∞    x+iy ts (s)ds.f(t)                     k      t k−1 t        >
                    [F
                                                                                                                                                               ,
             −1
                        2
                                                                         e
                                                                                                                         F
                                                                                                    −∞
                                            ∗
                                                                                          1
                                    h,f
                                                              1
                                                                                                                   e
                                                                       0
                                                                                                                                            c
                                                                                           2π
 −1  [F  1         (f    ∗  g)   ∗        −st     dt     = ε                      =               ∫      x−iy         ∑       ∞           (k−1)!
 L       h)    =                    (t)e                     f(a),f(t)                   lim                                     k=1                                 0,
 (g   ∗            ∫     ∞      f  ε                  =                         =         y→∞                       =                                         >
 f  ∗           =          0               a)dt                                                        ).f(t)                                           s
        (t)]                         −                    ts (s)ds                        Res(z       k                A       −st (t) dt                      −st (t)|dt,
                                                              F
                                                                                                                                       f
 L[f  ε      ∫    b    f(t)δ(t      ∫     x+i∞          e              ∑        n  k=1                                ∫       e                   ∫     τ   |e         f
            ).      a            1          x−i∞                     =                                       lim                                                                    ,
    f(t   0            =         2πi x+iy ts (s)ds                                                  =        A→∞            0               τ→0          0               ≥      t  0
                                                       F
        0f(t)                  ∫      x−iy       e                 ∫        −st (t) dt                      θ---real,lim                             Me    αt t        αL[f(t)]         +
                                                                                                                                                                 ,
                                                                                    f
                                                                   ∞
                                                                                                                                                                                             =
                            1
               lim         2πi                                =            e                isin θ,                          0,|f(t)|         ≤                 =              −    a))    α).
                y→∞                       =      F(s)                    0 cos θ       +                             →                       +    βg(t)]         a (t)f(t           >        +    ).
                                                                                                                                                           1, 2, 3, . . . (s
                      0.L[f(t)]              −1 (s),e               =       ∫     τ  ′   |e −st (t)|dt               ∞,L[αf(t)              >      a),L(u       sL(f(t))          −    f(0    (t))  =  =
                                                               iθ
                                                                                                     f
                                                                                                                                                                                         (n)
                                                                                                                                                    =
                                                                                                                                                                            α).L(f
                                                   F
                                                                                                               →
                                                                                                                               n (t)),
                                                                                                                                                          =
                                                                                                                                                 (t))
                                                                                                                                  f
                            f(t)     =    L    −st (t)dt              ≤           tau  0asRe(s)           (areal, Re(s)                     n ′ − (Re(s)            >     + L(g(t))                             =
                                                                                                                          n
                                                                                                                              t
                                                                                                                                                                                ).
                                                                                                f
                                                                                                                                           f(t
                                 ∫     τ  ′  e        f                         →         at (t)),           L((−1)       >      α),L(f            ))      (n−1)        (0           ∫     ∞      F(x)dx
                                                               L(f(t))        =     L(e               =                       +   )  −           1        f                       α).        s
                                                                                      n
                                                                                                               −t (f(t
                                        τ                =              a)         d F(s)           +   )(Re(s)                 1           · · ·   −                        >                                       0,
                                                                                                                     s
                                       L,F(s)                       −  ≥ sL(f(t))          −   f(0)     −    e  n−2 (0+)                −          1   L(f(t))(Re                               f(t),      t   ≥
                                                                                         n
                                                                                                                    1
                                                                                                f(0
                                                                                     ds
                                                                              0),
                                          βL[g(t)].F(s
                                                                                                                           ′
                                                                                                                         f
                                                       F
                                                                                                     )
                                             e −as (s)(a          =      sL(f(t))         −      + −           s          L[1]L[f(t)]           =     s              −1    (F(s))     ∫   = t   f(τ)g(t        −     τ)dτ,   =
                                                         (t))
                                                                                                                                                                                                                      h)
                                                       ′
                                                                                           f
                                                L(f       ′  (t))   =            s n−1 (0                            =                                   >     0,L                            0            (g    +         dt     =
                                                   L(f                     −                           ∗  f)(t)]                       T  (t)]   ,  s                  g)(t)       =          h,f      ∗     (t)e  −st
                                                        n  L(f(t))                ]      =    L[(1                               L[f      −sT                      ∗                g)    ∗ ∫     ∞      f  ε                     f(a),
                                                       s         t                                                          =      1−e               (s)].(f              (f    ∗                                            =
                                                             [∫         f(τ)dτ                        α).L[f(t)]                         −1    [F   2       h)      =           (t)]    =          0          −    a)dt                    =
                                                            L                   )                                               (s)]L              (g   ∗    2  dx.L[f        ε       ∫    b    f(t)δ(t               ts (s)ds                      ).
                                                                                                                                                                                                                           F
                                                                      0                  (s    >                    −1    [F   1               ∗        −x                                             x+i∞          e                             k
                                                                    (     f(t)                                   L                  cg,f     ∫    t   e                            0 ).      a   ∫                           n         Res(z
                                                                                t                          ̸=               f   ∗        2          0                  =     f(t              1         x−i∞        ∑          k=1
                                                                   L                    (s)F    2 (s)]      ∗   g    =            =     √    π              t  )dt                    =      2πi                  =
                                                                           −1    [F   1        =     cf      h),erf(t)            ∫     b  (t)δ(t      − 0               0f(t)    x+iy ts (s)ds
                                                                                                                                                                                                   F
                                                                         L              g)               ∗                −εs                                 t   >         ∫                 e
                                                                                                                                         a
                                                                            c(f     ∗    g)    +   (f               1−e   εs       . iyt (x, y)dy,                      1          x−iy
                                                                               (f    ∗           −st     dt    =             xt   e      F                  lim         2πi
                                                                                     ∫     ε   e             ∫     ∞        e                         =      y→∞
                                                                                                             x+iy ts (s)ds.f(t)
                                                                                    1                     1         −∞
                                                                                     ε      0      =       2π                  F                            >   0.
                                                                                                                                                      ,
                                                                                         f(t)          ∫                 e                   t k−1 t
                                                                                                                                   c
                                                                                                                                      k
                                                                                               lim            x−iy    ∞          (k−1)!
                                                                                                y→∞           ∑          k=1
                                                                                                   f(t)    =
   1   2   3   4   5   6