Page 123 - 4749
P. 123

h    J
                                    1    2  .                       (6.27)
                                   h    J
                                    2     1
             Substituting in (6.27) values  J   t b 3  12  and  J   t b 3  12  and
                                           1   1 1          2   2  2
           considering  that  h   h  ,  we  obtain  expressions  for  the
                                      h
                              1    2
           distances  h  and  h :
                     1       2

                                              3
                                 hJ        t b h
                           h       2      2 2    ,                 (6.28)
                            1              3     3
                                J   J   t b   t b
                                 1   2    1 1  2 2
                                              3
                                  hJ       t b h
                           h       1      1 1    .                 (6.29)
                            2               3    3
                                J   J   t b   t b
                                 1    2   1 1  2 2
                                               t
             In  the  particular  case  when  t    and  b   b     (symmetric
                                            1   2       1    2
           double-T profile), i.e. the axis y is the axis of symmetry from the
           formulas (6.28) and (6.29), we obtain:
                                      h   h   h  2 ,
                                       1   2
           i.e., the bending center coincides with the center of gravity.





















                                     Figure 6.14


                                         123
   118   119   120   121   122   123   124   125   126   127   128