Page 123 - 4749
P. 123
h J
1 2 . (6.27)
h J
2 1
Substituting in (6.27) values J t b 3 12 and J t b 3 12 and
1 1 1 2 2 2
considering that h h , we obtain expressions for the
h
1 2
distances h and h :
1 2
3
hJ t b h
h 2 2 2 , (6.28)
1 3 3
J J t b t b
1 2 1 1 2 2
3
hJ t b h
h 1 1 1 . (6.29)
2 3 3
J J t b t b
1 2 1 1 2 2
t
In the particular case when t and b b (symmetric
1 2 1 2
double-T profile), i.e. the axis y is the axis of symmetry from the
formulas (6.28) and (6.29), we obtain:
h h h 2 ,
1 2
i.e., the bending center coincides with the center of gravity.
Figure 6.14
123