Page 3 - 4263
P. 3

Contents




                           Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .                5
               Lecture 1.   Elements of Determinants’ Theory . . . . . . . . . . . . . . . .               5
                        1.1.  Determinants and their properties . . . . . . . . . . . . . . .              5
                        1.2.  Use of determinants to solve systems of linear algebraic equations .         9
               Lecture 2. Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . .                  10
                        2.1.  Definition of a matrix . . . . . . . . . . . . . . . . . . . . .            10
                        2.2.  Operations with matrices . . . . . . . . . . . . . . . . . . .              11
                        2.3.  Inverse matrix . . . . . . . . . . . . . . . . . . . . . . .                12
                        2.4. Using matrices for solving systems of linear algebraic equations . .         13
                        2.5.  Rank of a matrix . . . . . . . . . . . . . . . . . . . . . . .              14
               Lecture 3.   General Research Into the System of Linear Algebraic Equations . .            16
                        3.1.  General information about systems of linear equations . . . . . .           16
                        3.2.  Theorem on the existence of a system of linear equations solution .         16
                        3.3.  Linear homogeneous systems . . . . . . . . . . . . . . . . .                18
                        3.4. Gauss’ method of successive exception of unknowns . . . . . . .              18
               Lecture 4. Elements of Vector Algebra. . . . . . . . . . . . . . . . . . .                20
                        4.1.  Rectangular system of coordinates in space . . . . . . . . . . .           20
                        4.2. Definition of a vector . . . . . . . . . . . . . . . . . . . . .             21
                        4.3. Linear operations with vectors . . . . . . . . . . . . . . . .               21
                        4.3.1.  Addition of vectors . . . . . . . . . . . . . . . . . . . . .            22
                        4.3.2. Multiplying of a vector by a digit . . . . . . . . . . . . . . .          23
                        4.4. Projection of a vector onto the axis . . . . . . . . . . . . . . .          23
                        4.5. Projections of a vector onto the coordinate axis . . . . . . . . .           25
                        4.6. Direction cosines of a vector . . . . . . . . . . . . . . . . .             26
                        4.7. Linear dependence of vectors. Basis . . . . . . . . . . . . . .              27
                        4.8. A rectangular basis. Expansion of a vector by basis. . . . . . . .          29
                        4.9. Separation of a closed interval in a given ratio . . . . . . . . . .         30
               Lecture 5.   Multiplication of Vectors . . . . . . . . . . . . . . . . . . . .             31
                        5.1.  Dot product of vectors . . . . . . . . . . . . . . . . . . . .              31
                        5.2.  Cross product of vectors . . . . . . . . . . . . . . . . . . .             34
                        5.3.  Mixed product of vectors . . . . . . . . . . . . . . . . . . .              37
               Lecture 6. Analytic geometry on a plane . . . . . . . . . . . . . . . . . .               40
                        6.1.  Polar system of coordinates . . . . . . . . . . . . . . . . . .            40
                        6.2.  Transformation of rectangular coordinates . . . . . . . . . . .             41
                        6.2.1.  Parallel shift of axes . . . . . . . . . . . . . . . . . . . .            41
                        6.2.2. Turning of axes . . . . . . . . . . . . . . . . . . . . . .               42
                        6.3.  Equation of a line on a plane . . . . . . . . . . . . . . . . . .          42
                        6.4. Straight line on a plane. Its equation . . . . . . . . . . . . . .          44
                        6.4.1.  General equation of a line . . . . . . . . . . . . . . . . . .           44
                        6.4.2. Canonical equation of a line. . . . . . . . . . . . . . . . . .           45
                        6.4.3. Equation of a line, that goes through a given point parallel to the given
                         direction . . . . . . . . . . . . . . . . . . . . . . . . . . . .               45
                        6.4.4. Equation of a line with the angle coefficient . . . . . . . . . . .       46
                        6.4.5. Equation of a line that crosses two given points . . . . . . . . .        46
                        6.4.6. Equation of a line in segments. . . . . . . . . . . . . . . . .           47
                        6.4.7. Normal equation of a line. . . . . . . . . . . . . . . . . . .            48


                                                              3
   1   2   3   4   5   6   7   8