Page 21 - 33
P. 21

Оголошення  масивів  робиться  лише  на  ті  величини,  значення  яких  ми
               хотіли б зберегти для наступного виводу на екран чи принтер. У нашій задачі


               це  ідентифікатори  з  індексом  i.  Для  оголошення  масиву  використовується
               команда  DIM,  після  якої  перелічуються  ідентифікатори  (без  індексів)  із


               вказанням  в  дужках  розміру  масиву,  тобто  очікуваної  кількості  цих  даних.
               Ідентифікатори розділяються комою.


                      При виборі розміру масиву слід пам’ятати, що він повинен бути більшим

               за  фактичну  кількість  даних.  Так,  наприклад,  якщо  розмір  масиву  20,  а

               фактична кількість даних 17, то програма працюватиме нормально. Якщо ж при

               цій кількості даних розмір масиву 15, то ми  не зможемо ввести і обрахувати усі

               дані. Зайве перевищення розміру масиву над кількістю даних (наприклад,100)

               не призведе до збою програми, але частка оперативної пам’яті не зможе бути

               використаною.  Якщо  кількість  даних  не  перевищує  10,  масив  можна  не

               оголошувати. Константу РІ оголошуємо, як у попередній програмі.



                      25 DIM D1(20), D2(20), L(20), F(20), V(20)

                      30 PI = 3.14


                      Ввід кількості ділянок робимо вже відомим нам способом


                      35 INPUT “  Кількість ділянок  ” ,N



                      Переходимо  до  організації  блоку  вводу  вхідних  даних.  Згідно  з  блок-

               схемою це повинно робитись в циклі. Як зазначалося вище, цикл складається з

               трьох елементів: відкриття циклу, робоче ядро і закриття циклу.

                      Відкриття  циклу  має  призначення  окреслити,  в  яких  межах  і  з  яким

               кроком  повинно  працювати  ядро  циклу.  Тому  воно  (відкриття)  має  таку

               структуру:

                      FOR (від) … ТО(до) … STEP(крок) ...

                      Якщо крок дорівнює одиниці, останній елемент може бути відсутнім.



                                                              21
   16   17   18   19   20   21   22   23   24   25   26