Page 32 - 6637
P. 32

Chapter 5





               Boundary and initial conditions






               5.1      Solved Problems

               Exercise 103. Solve the boundary problem

                                                         2
                                                        d u     du
                                                       t     +      = 0
                                                        dt 2    dt

                                        u(t ) = T ,      u(t ) = T ,     0 < t < t ,
                                            1
                                                                    2
                                                   1
                                                            2
                                                                                     2
                                                                               1
               Solution: Let v(t) =     du . Then
                                         dt
                                               Z            Z
                                dv       v         dv           dt
                                    = − ,              = −         ,   ln v = − ln t + ln C ,
                                                                                              1
                                dt        t        v             t
                                                     C 1
                                            v(t) =      ,   u(t) = C ln t + C .
                                                                                 2
                                                                       1
                                                      t
               Taking into account the initial condition, we obtain
                                                  (
                                                    C ln t + C = T ,
                                                                         1
                                                      1
                                                           1
                                                                  2
                                                    C ln t + C = T .
                                                                  2
                                                           1
                                                                         1
                                                      1
               Solving this system of equations, one deduces
                                               T − T   1                      T − T   1
                                                                                2
                                                2
                                        C =             ,   C = T − ln t     1
                                                                     1
                                          1
                                                              2
                                                 ln  t 2                        ln  t 2
                                                    t 1                            t 1
               Hence, the problem has the following solution
                                                 T − T   1                   T − T   1
                                                                               2
                                                  2
                                        u(t) =            ln t + T − ln t   1         .
                                                                   1
                                                   ln  t 2                     ln  t 2
                                                      t 1                         t 1






                                                              28
   27   28   29   30   31   32   33   34   35   36   37