Page 75 - 6099
P. 75

Z Z   ∞  ∂S                                Z  ∞
                           t
                      =             (x − y, t − s)f(y, s)dyds + lim     S(x − y, t − s)f(y, s)dy.  (7.27)
                          0  −∞  ∂t                             s→t  −∞
                   taking special care due to the singularity of S(x − y, t − s) at t − s = 0. Using the fact
                   that S(x − y, t − s) satisfies the diffusion equation, we get

                              Z Z   ∞    2                                 Z  ∞
                                t
                        ∂u              ∂ S
                            =         k     (x − y, t − s)f(y, s)dyds + lim     S(x − y, ε)f(y, t)dy.
                        ∂t     0   −∞   ∂x 2                            ε→0  −∞
                   Pulling the spatial derivative outside the integral and using the initial condition satisfied
                   by S, we get

                                               t
                                 ∂u      ∂ 2  Z Z  ∞
                                     = k             S(x − y, t − s)f(y, s)dyds + f(x, t) =
                                 ∂t      ∂x 2  0  −∞
                                                           2
                                                         ∂ u
                                                     = k      + f(x, t).
                                                         ∂x 2
                   This identity is exactly the PDE (7.19). Second, we verify the initial condition. Letting
                   t → 0, the first term in (7.20) tends to φ(x) because of the initial condition of S. The
                   second term is an integral from 0 to 0. Therefore,

                                                                   0
                                                                 Z
                                            lim u(x, t) = φ(x) +     . . . = φ(x).
                                             t→0
                                                                  0
                   This proves that (7.20) is the unique solution.
                       Remembering that S(x, t) is the gaussian distribution (7.7), the formula (7.20) takes
                   the explicit form

                                                Z Z
                                                   t  ∞
                                       u(x, t) =         S(x − y, t − s)f(y, s)dyds =
                                                  0  −∞
                                       Z Z   ∞        1
                                          t
                                                                    2
                                     =          p            e −(x−y) /4k(t−s) f(y, s)dyds.        (7.28)
                                         0  −∞    4πk(t − s)
                   in the case that φ = 0.


                   7.4      Source on a half-line


                   For inhomogeneous diffusion on the half-line we can use the method of reflection.
                       Now consider the more complicated problem of a boundary source h(t) on the half-line;
                   that is,

                                      v t − kv xx = f(x, t) for 0 < x < ∞, 0 < t < ∞,
                                                       v(0, t) = h(t),                             (7.29)
                                                       v(x, 0) = φ(x).






                                                             68
   70   71   72   73   74   75   76   77   78   79   80